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Abstract. Controlling molecular energetics using laser pulses is exemplified for nuclear motion in two 
different diatomic systems. The problem of finding the optimized field for maximizing a desired quantum 
dynamical target is formulated using an iterative method. The method is applied for two diatomic sys-
tems, HF and OH. The power spectra of the fields and evolution of populations of different vibrational 
states during transitions are obtained. 
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1. Introduction 

The control of chemical dynamical systems using co-
herent beam of light sources has been an active area 
of research for more than two decades. Much theo-
retical progress has been made by designing laser 
pulse shapes to produce a prescribed physical sys-
tem.1,2 It is now understood that quantum mechanical 
interference properties are fundamental to processes 
occurring at the atomic and molecular level. Among 
the several approaches used, efforts employed using 
optimal control theory (OCT)3–8 to design the pulse 
shapes have met with considerable theoretical and 
experimental success for small molecular systems. 
These include control over branching processes such 
as dissociation vs. ionization in HCl, HF, HI, CO, 
and ICN demonstrated by several groups,9–12 laser 
control of selective bond breaking in the molecule 
HOD with products HO and D or H and OD.13–15 A 
different approach using interference between compet-
ing paths developed by Shapiro et al is exemplified 
by the experimental demonstration of the control of 
branching ratio of Na2 dissociating into sodium atoms 
in different electronic states.16–18 Inverse quantum me-
chanical control to obtain appropriate field for tracking 
dynamics was also explored.19,20 Artificial intelli-
gence and learning algorithm based experimental 
set-ups21–25 are also capable of providing a suitable 
laser field for prescribed dynamics, which prepare 

reactants in specific states to follow a desired reac-
tion path. This control technique is difficult to imple-
ment for complex molecules. 
 The OCT method intrinsically takes account of 
the interference processes taking place in a dynamical 
quantum mechanical system. Developed intensely in 
the last two decades, OCT utilizes time propagation 
operators. In more advanced application of this ap-
proach, a toolkit of time propagation operators to be 
stored and recalled as needed, is incorporated into the 
algorithm for the optimal control of a quantum sys-
tems.8 
 In complex molecules with too many atoms, any 
change in vibration of a bond instantly effects the 
vibration of the other bonds. Thus, selective excita-
tion of one mode is instantly coupled to several dis-
sipative mode of energy re-distribution. In such cases, 
OCT turns out to be the most appropriate method. It 
is not always feasible to generate the laser fields ex-
actly as demanded by OCT unless issues of design 
like appropriate envelope of the pulse, lower fluence, 
etc. are included in the scheme. 
 In this work, we present control experiments carried 
out on a computer to obtain optimal fields to produce 
population transfer from an initial state to a given 
excited target state of the diatomic molecules, HF 
and OH. We have used an iterative method26 for opti-
mization described in §2. In §3, we have described 
the control system. The results are discussed in §4 
and finally, we conclude with comments on insights 
obtained in §5. 
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2. Theory 

The formalism of OCT is based on the choice of the 
optimal cost functional, J[ε(t)], which depends on an 
optimal driving field. The cost functional, J[ε(t)], 
containing mainly three terms, takes the following 
shape26 
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The first term known as objective in (1) is chosen 
such that for the maximal value of the cost functional, 
the field propagated system states, ψi|(t=T) = φi(T), at 
the terminal time T (evolved from an initial state, 
ψi|(t=T) = φi(0), has maximum overlap with the de-
sired product state φf(T). 
 The second term known as penalty term in (1) is 
designed to include all the physical processes that 
are deemed undesirable during the controlled evolu-
tion of the molecule. It includes the restriction on 
the strength of the optical field ε(t) which might be 
expressed as the fluence term. The factor β0 is a 
positive weighing parameter to adjust the contribu-
tion of the radiation energy to the functional. 
 The last term involving the Schrödinger equation 
is the dynamical constraint that should be followed 
exactly during the time evolution of the system. The 
function χf(t) can be regarded as a Lagrange multi-
plier introduced to assure satisfaction of the 
Schrödinger equation. 
 The Hamiltonian operator, ˆ ,H  within the dipole 
approximation is defined as 
 
 0

ˆ ˆ ( )H H V tμε= + − , (2) 
 
where 0Ĥ  is the kinetic energy operator, μ is the di-
pole moment and V is the potential energy. The term 

( ) | ( )i ft tψ φ〈 〉  multiplying the first integral in (1) is 
introduced to decouple the boundary conditions for 
determination of ( )i tψ  and ( )f tχ . 
 Each of these terms depends explicitly or impli-
citly on the unknown driving field ε(t) and the goal 
is to maximize J[ε(t)] for the determination of ε(t) 
by demanding J[ε(t)]/∂ε = 0. Setting to zero the first 
order variations of the cost functional with respect to 
ε(t), ψi(t) and χf(t) leads to the following non-linear 
equations 
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A time-dependent Gaussian factor, g(t), is applied to 
the penalty function that ensures practically feasible 
profile of the laser pulse with a suitable envelope27 

 

 
0

( )( ) Im ( ) | ( ) ( ( ) | | ( ) )i f f i
g tt t t t tε ψ φ χ μ ψ
β

= − 〈 〉 〈 〉 ,  

 (6) 

where 
 
 2 2( ) exp( ( / 2) /( / 4) ).g t t T T= − −  (7) 
 
Other choices are possible for g(t). We have reported 
elsewhere calculations carried out using a sinusoidal 
shape.28 
 Equations (3) and (4) give the evolving initial and 
final state of the system in time and to obtain the de-
sired field using (6) both are required at that point of 
time. The coupled differential (3) and (4) should be 
solved iteratively due to their non-linear nature. For 
this purpose, we have used an iterative method pro-
posed by Zhu et al26 described below to obtain the 
desired field. 
 On a first reading it appears obvious that setting 
up the cost functional as in (1) will naturally have an 
optimal solution for the field for the pre-determined 
task of maximizing population in the final state. How-
ever, optimization in a function space is an extremely 
complex task. Ordinarily, a direct excitation using 
the fundamental frequency corresponding to the en-
ergy gap between the initial and final states would 
set up Rabi oscillations between the two states. We 
are demanding that precisely at a time equal to a pre-
determined value (say, 30,000 a.u.), the population 
of the final state must be maximum. There are several 
dynamical possibilities for this to happen. In other 
words, there are several optimal solutions in the 
space of functions describing the electric field. We 
ask for the one with reasonable fluence and an ex-
perimentally achievable pulse shape. While here we 
address a rather simple problem of vibrational exci-
tation in a diatomic, more complex problems of re-
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active nature may be also formulated using OCT. As 
can be seen from the power spectra of the field ob-
tained using OCT, the mechanism of excitation even 
in such simple cases involves other than the funda-
mental, small contributions from other frequencies.  

2.1 Iterative method 

By taking an initial guess field, εinitial, the system target 
state, χf (T) = φf (T), is propagated backward in time 
to obtain φf (T) and system initial state, ψi = φi(0), is 
propagated forward in time to obtain ψi(t). Using 
these states, χf (t) and ψi(t), the new field, ε(t), is ob-
tained using (6). The system final state, χf (T) – φf (T), 
and the initial state, ψi = φi(0), are again propagated 
backward and forward using this field to obtain the 
new field. This process is repeated again iteratively to 
obtain an optimal value of the field. A discrete pro-
pagation method is used to evaluate the algorithm, 
which is employed for the solution of these nonlinear 
equations. To solve the Schrödinger equation, we have 
used the second order split-operator method.29,30 An 
iterative process analogous to the one discussed 
above is set-up in order to maximize the cost func-
tional, J. 

2.2 Split-operator method 

Numerical calculation of the evolution of a quantum 
mechanical system presents a tricky situation since 
the exponential of kinetic and potential energy op-
erators have to be applied separately and the result 
put together. These two operators do not commute and 
the results obtained using one sequence of operation 
are generally different from those obtained using the 
reverse sequence. The split-operator method29,30 util-
izes the splitting of the kinetic energy operator, 0Ĥ  
for better numerical accuracy. The propagator can be 
approximated using second order split-operator method 
for a small time interval Δt as (Note that V here in-
cludes the field term) 
 

 0 0
ˆ ˆˆ ( / 2 ) ( / 2 )( / ) ( / )i H t i H ti H t i V te e e e± Δ ± Δ± Δ ± Δ= , (8) 

 
where + sign indicates the backward propagation 
and – sign indicates the forward propagation of the 
system states respectively. 
 The kinetic energy, 0

ˆ ,H  part of the propagator, 
0

ˆ( / 2 )i H te± Δ , is calculated using the Fast Fourier 
Transform (FFT) method.31,32 The operator, ( / )i V te± Δ , 
is diagonal in the coordinate space representation 
and is calculated by simple multiplicative process. 

 Several other methods may be used for the opti-
mization of cost functional. Results using a conju-
gate gradient method33 are reported elsewhere in this 
journal.34 

3. The control system 

We have chosen two diatomic systems for studying 
the vibrational excitations from an initial state to a 
target state in a Morse potential of the HF and OH 
molecule in the prescribed time interval T. Our ob-
jective is to control the population transfer from an 
initial state to a target state. 
 We solve the Schrödinger equation for the bound 
states of HF and OH molecule using Fourier Grid 
Hamiltonian method35 to obtain vibrational energies 
and eigenfunctions. The initial state of the system is 
prepared from these eigenfunctions. 
 The Morse potential model for the anharmonic in-
teraction of the atoms is 
 
 ( ) 2.( ) [1 0 ]ex x

eV x D e β− −= − , (9) 
 
where for HF the parameters36 are De = 
0⋅2550073497, xe = 1⋅7329, and β = 1⋅1741 in a.u., 
and the dipole moment used is given by36 
 
 4

0( ) ,xx xe σμ μ −=  (10) 
 
where, μ0 = 0⋅4535 and σ = 0⋅0064 in a.u. 
 And the parameters for O–H are37. De = 0⋅1994, 
xe = 1⋅821, and β = 1⋅189 in a.u., and the dipole mo-
ment used is given by38 
 
 ./ 0 6

0( ) xx xeμ μ −= , (11) 
 
where, μ0 = 3⋅088 in a.u. 

4. Results and discussion 

Our goal is to see if arbitrary vibrational states can 
be prepared coherently using the iterative algorithm 
and the pulse shape manipulation discussed earlier. 
We selected a few cases arbitrarily for this purpose. 

4.1 Vibrational excitation of HF: v = 2 → v = 4 

In the first case considered, the initial wave func-
tion, ψi(0), is chosen to be the Morse 2nd excited 
state, and the target wave function is chosen to be the
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Figure 1. Results for v = 2 → v = 4 of HF: Optimized field as a function of time (A1), power spectrum 
of the optimized field (A2), population analysis of relevant states as a function of time (A3), overlap of 
the field propagated state with target state at final time (A4), convergence of transition probability, P, 
and optimized cost functional, J, (A5) for a pulse 60,000 a.u. 

 
 
 
Morse 4th excited state at 60000 a.u. in the ground 
electronic state of HF molecule. The initial guess for 
the field is taken as 
 
 23 34

.0 005[sin( ) sin( )]i t tε ω ω= + , (12) 
 
where ω23 and ω34 are the resonant transition fre-
quencies between the 2nd and 3rd vibrational states 
and between the 3rd and 4th vibrational states of 
HF, respectively. 

 The optimized electric field corresponding to 
pulse duration of 60,000 a.u. is shown in plot A1 of 
figure 1. The power spectrum of the optimized field 
is shown in plot A2 of figure 1. It is clear from this 
figure that the field has major contribution from the 
frequencies corresponding to the following vibra-
tional transitions v = 2 → v = 3, v = 3 → v = 4 and 
v = 2 → v = 4 at 3623, 3449 and 7072 cm–1 respec-
tively. Thus the optimal solution under the given 
constraints is a mixture of several different transi-
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Figure 2. Results for v = 2 → v = 4 of OH: Optimized field as a function of time (B1), power 
spectrum of the optimized field (B2), population analysis of relevant states as a function of 
time (B3), overlap of the field propagated state with target state at final time (B4), convergence 
of transition probability, P, and optimized cost functional, J, (B5) for a pulse 60,000 a.u. 

 
tion frequencies rather than a single frequency cor-
responding to the energy gap between the initial and 
the final states. 
 The population of the field propagated initial state 
and the target state are plotted against time in plot 
A3 of figure 1. There is a complete transfer of the 
population from the initial state to the desired target 
state. At first, we see an increase in the population 
of the intermediate v = 3 state and then it decays to 
zero at the end of the pulse. The propagated initial 
state of the system at final time shows a large overlap 
with the target state as shown in plot A4 of figure 1. 
These figures display the square of field propagated 
initial wave function and of the targeted wave func-
tion at final time. 

 Plot A5 of figure 1 shows the convergence beha-
viour of the objective functional as well as the opti-
mized probability versus the number of iteration 
steps. The algorithm converges fast. The magnitude 
of the optimized objective functional is 0⋅89 corre-
sponding to a 100% transfer of population to the fi-
nal state. 

4.2 Vibrational excitation of OH: v = 2 → v = 4 

Next, we have obtained the optimal laser field for 
the vibrational transition from 2nd to 4th excited vi-
brational state in the ground electronic state of OH 
molecule. The initial guess of the field is same as 
described in (12) except the frequency now corre-
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Table 1. Comparison of results for 2 → 4 vibrational transition of HF and OH for a pulse 
duration of 60,000 a.u. 

Molecular  Vibrational    Transition  Optimized cost  
system transition Energy Iteration probability (P) functional (J) 
 

HF 2 → 4 7071 463 0⋅99208 0⋅89831 
OH 2 → 4 6671 691 0⋅99246 0⋅89983 

 

sponds to the OH systems. The optimized electric field 
for this population transfer control is shown in plot 
B1 of figure 2 for 60,000 a.u. of time. The respec-
tive frequency distributions of the field plotted in B2 
of figure 2 show major contributions from frequen-
cies corresponding to the vibrational transitions 
v = 2 → v = 3, v = 3 → v = 4 and v = 2 → v = 4 at 3425, 
3246 and 6671 cm–1, respectively. It is interesting to 
note that while for OH the maximal contribution 
here comes from v = 3 → v = 4 transition, whereas 
in case of HF, it was from v = 2 → v = 3. Since we are 
dealing with the absorption of IR radiation caused 
by a change in dipole moment with nuclear motion, 
it is possible that this gradient in dipole moment is 
higher for OH as the energy of the system increases. 
This may explain the greater contribution from the 
v = 3 → v = 4 frequency. 
 The population analysis of the initial and target 
states at final time is shown in plot B3 of figure 2. 
The initial state corresponding to v = 2 propagated 
by the optimal field roughly matches with the eigen-
state corresponding to v = 4 at final time as shown in 
plot B4 of figure 2. The transition probability and 
the final cost functional versus the number of itera-
tion steps are shown in plot B5 of figure 2. 
 Comparing the results for the transition v = 2 → 
v = 4 in table 1, it is seen that the transition prob-
ability is ≈ 100% for both the diatomic systems. 
There is not much difference in the numerical values 
of the cost functional as well as the transition prob-
ability for the two cases. Since the field peak magni-
tudes and envelopes are nearly similar, the fluence 
terms are of comparable magnitudes. Interestingly, 
the convergence in case of OH turned out to be much 
slower than in the case of HF. 

5. Conclusion 

The iterative method described in §2 was applied for 
the control of vibrational excitations in two diatomic 
quantum systems. We obtained reliable desired laser 
field for the deterministic control problems. A Gaus-
sian envelope factor is introduced into the field 

equation for meaningful practical realizations of the 
field into the laboratory. We have also explored the 
possibility of the field shape using a sinusoidal fac-
tor reported elsewhere28. There is a slight disadvan-
tage of the Gaussian shape3 of the field envelope, it does 
not go strictly to zero before and after the pulse. But 
the overall shape of the field corresponds more closely 
to experimentally realizable possibilities. Fields were 
optimized for the vibrational transition from v = 2 → 
v = 4 described above for HF and OH. The peak am-
plitude of the field is within reasonable and experi-
mentally realizable bounds. In our further work, we 
are exploring the role of environmental noise on the 
control scenario.  
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